数学小知识 有趣的222140句精选

2023年10月08日|来源:青春励志语录网|阅读:59

有趣的数学小知识大全

1、有趣的数学小知识手抄报

(1)、精品资料丨初中易错题集锦+公式大全+知识点汇总,免费领取了

(2)、用四个“重要数”,可以运用最少的加减,就能得到另外六个“非重要数”。比如1+2=2+2=5+1=5+2=5+2+1=5+2+2=这就是区别“重要”和“非重要”的原因。用10这四个“重要数”作为人民币的面值的原因就是,可以用最少张数的人民币,实现人们的交易。

(3)、直接查看各专栏下的精彩文章,按"搜索"按钮,快速查找。

(4)、(8)你可以只用三刀就把一个蛋糕切成8块。

(5)、假如“一拃”的长度为8厘米,量一下课桌的长为7拃,则可知课桌长为56厘米。如果每步长65厘米,上学时,数一数走了多少步,就能算出从家到学校有多远。

(6)、高一高二各一道基础题的视频讲解,数学学渣的福音!高三一道高考真题,或值得关注的中档题或者压轴题!考上130分甚至是1就靠它啦! 

(7)、著名的“陈氏定理”是由我国著名的数学家陈景润创立的,被人们亲切的称为“数学王子”。

(8)、若去游玩,要想知道前面的山距你有多远,可以请声音帮量一量。声音每秒能走331米,那么对着山喊一声,再看几秒可听到回声,用331乘听到回声的时间,再除以2就能算出来了。

(9)、在我国和亚洲一些国家有着12生肖的说法

(10)、《算经十书》中国汉唐以来陆续出现的十部数学著作的汇编册。唐代在国立大学设置了算学,以十部数学著作作教科书使用。这十部算经是:《周髀算经》、《九章算术》、《孙子算经》、《五曹算经》、《夏侯阳算经》、《张邱建算经》、《海岛算经》、《五经算术》、《缀术》、《辑古算经》。

(11)、代数给了一种崭新的解决间题的方式,一种“回旋”的演年方法。这种“回旋”是“反向思维”的。让我们考虑一下这个问题,当给数字25加上17时,结果将是这是正向思维。这些数,需要做的只是把它们加起来。在很早的时候,以为“1”是“数字字符表”的开始,并且它进一步引出了5等其他数字。这些数字的作用是,对那些真实存在的物体,如苹果、香蕉、梨等进行计数。直到后来,才学会,当盒子里边已经没有苹果时,如何计数里边的苹果数。数字系统是一种处理“多少”的方法。不同的文化在不同的时代采用了各种不同的方法,从基本的“很多”延伸到今天所使用的高度复杂的十进制表示方法。

(12)、947年,匈牙利数学家把这一原理引进到中学生数学竞赛中,当年匈牙利全国数学竞赛有一道这样的试题:“证明在任何六个人中,一定可以找到三个互相认识的人,或者三个互不认识的人。”这个问题乍看起来,似乎令人匪夷所思。但如果你懂得抽屉原理,要证明这个问题是十分简单的。我们用A、B、C、D、E、F代表六个人,从中随便找一个,例如A吧,把其余五个人放到“与A认识”和“与A不认识”两个“抽屉”里去,根据抽屉原理,至少有一个抽屉里有三个人。不妨假定在“与A认识”的抽屉里有三个人,他们是B、C、D。如果B、C、D三人互不认识,那么我们就找到了三个互不认识的人;如果B、C、D三人中有两个互相认识,例如B与C认识,那么,A、B、C就是三个互相认识的人。不管哪种情况,本题的结论都是成立的。由于这个试题的形式新颖,解法巧妙,很快就在全世界广泛流传,使不少人知道了这一原理。其实,抽屉原理不仅在数学中有用,在现实生活中也到处在起作用,如招生录取、就业安排、资源分配、职称评定等等,都不难看到抽屉原理的作用。

(13)、因此,轴流风扇的设计多为不对称的奇数片叶片设计。

(14)、传说早在四千五百年前,我们的祖先就用刻漏来计时。

(15)、◆人教版小学一年级语文上下册学习大纲及要求,建议老师.家长收藏看看!

(16)、冬天,猫睡觉时总是把身体抱成一个球形,是因为这样身体散发的热量最少。

(17)、在1882年,著名数学家菲利克斯·克莱因发现了后来以他的名字命名的著名“瓶子”:克莱因瓶。克莱因瓶就像是一个瓶子,但是它没有瓶底,它的瓶颈被拉长,然后似乎是穿过了瓶壁,最后瓶颈和瓶底圈连在了一起。有趣的是,如果把克莱因瓶沿着它的对称线切下去,竟会得到两个莫比乌斯环。

(18)、新知识的接受和数学能力的培养主要是在课堂上进行的,所以我们必须特别注意课堂学习的效率,寻找正确的学习方法.在课堂上,我们必须遵循教师的思想,积极制定以下步骤,思考和预测解决问题的思想与教师之间的差异.特别是,我们必须了解基本知识和基本学习技能,并及时审查它们以避免疑虑.首先,在进行各种练习之前,我们必须记住教师的知识点,正确理解各种公式的推理过程,并试着记住而不是采用"不确定的书籍阅读".勤于思考,对于一些问题试着用大脑去思考,认真分析问题,尝试自己解决问题.

(19)、    同学们一定发现了,上面四幅栩栩如生的少数民族画像,都是用一笔画成的。其实,不仅在艺术范畴,数学之中的“一笔画问题”也大有学问呢!一起跟李老师去看看吧!

(20)、乘号“×”:是三百多年前英国著名数学家欧德莱最先使用的,他认为乘法是加法的一种特殊形式,于是他便把前人所发明的“×”转动45°角,这样乘号“×”也就面世了。“×”既表示了乘法与加法的关系,又表示了相乘的方法。

2、数学小知识 有趣的222

(1)、孩子不笨,而是家长方法笨!90%家长都在用笨方法“教笨”孩子!

(2)、由于一年最多有366天,因此在367人中至少有2人出生在同月同日。这相当于把367个东西放入366个抽屉,至少有2个东西在同一抽屉里。

(3)、桌子问题,一张方桌,砍掉一个角还有几个角?

(4)、世界其他文明古国的数学史,印度大约有3500年到4000年,希腊不过2500多年,至于现在的欧洲国家,公元10世纪以后才有数学史,至今不到1000年,所以说,中国是数学的故乡。

(5)、人体的胸部有12块胸椎,分别与12对肋骨相接

(6)、“数学天才”高斯是德国的数学家。高斯10岁时很快算出布特纳给学生们出的1+2+3+…+100的算术题,布特纳当时给孩子们出的是一道更难的加题:81297+81495+81693+…+1008说完高斯也算完并把写有答案的小石板交了上去,当时只有他写的答案是正确的。

(7)、莫比乌斯环是一种拓扑学结构,它只有一个面和一个边界。可以用一根纸条扭转成180度后,两头再粘接起来,就形成了莫比乌斯环。

(8)、(1)都是100kg,所以一样重。(2)“洞”里是没有泥土的。(3是4元,不是8元。(4)一只野兔,死掉的那一只。

(9)、"+"号是由拉丁文"et"("和"的意思)演变而来的。十六世纪,意大利科学家塔塔里亚用意大利文"più"(加的意思)的第一个字母表示加,草为"μ"最后都变成了"+"号。

(10)、面积的计算。自家的住房面积,公园的占地面积,操场的活动面积等等。

(11)、普乔柯是原苏联著名的数学家。1951年写成《小学数学教学法》一书。这本书中有下面一道有趣的题。商店里三天共卖出1026米布。第二天卖出的是第一天的2倍;第三天卖出的是第二天的3倍。求三天各卖出多少米布?这道题可以这样想:把第一天卖出布的米数看作1份。就可以画出下面的线段图:第一天为1份;第二天为第一天的2倍;第三天为第二天的3倍,也就是第一天的2×3倍。

(12)、为什么有的人学数学很吃力,而有的人很轻松?原因就在这儿,因为有的人遇到难题没有解决时,就感觉如同水里放入了苦丁茶,把数学看成了烦恼;而有的人把找到答案后的乐趣看成把果汁放入的水里,数学就成了乐趣。

(13)、在数学中,体积一定,表面积最小的物体是球体。

(14)、其实数学是非常有趣的,大家一定要开心学数学!

(15)、◆小学一年级语文汉语拼音知识汇总!开学特别整理

(16)、因此,车里坐的人,就能平稳地被车子拉着走。假如车轮变了形,不成圆形了,轮上高一块低一块,到轴的距离不相等了,车就不会再平稳。

(17)、   如果无法实现“一次不重复完成”,如何尽可能的减少重复是你需要思考的问题。

(18)、以上的这些趣味小知识是不是很有意思呢?同学们只要我们在生活中用数学的眼光去观察,用数学的头脑去思考,相信你们也会成功的!

(19)、切豆腐问题:一块豆腐切三刀,最多能切几块?

(20)、同样,75的32%可能看起来很难计算,但32的75%似乎是一个更容易地计算。

3、简短又有趣的数学知识

(1)、版权声明:本文来源于网络,版权归原作者所有。

(2)、1489年,德国数学家魏德曼在他的著作中首先使用“+”、“-”这两个符号表示剩余和不足,后来又经过法国数学家韦达的宣传和提倡,开始普及,直到1630年,才得到大家的公认。

(3)、从1-10这10个自然数,分为“重要数”和“非重要数”,10这四个数是“重要数”,9这六个数是“非重要数”。

(4)、把m个东西任意分放进n个空抽屉里(m>n),那么一定有一个抽屉中放进了至少2个东西。

(5)、“七巧板”是我国古代的一种拼板玩具,由七块可以拼成一个大正方形的薄板组成,拼出来的图案变化万千,后来传到国外叫做唐图。

(6)、对于小学一年级的学生来说,数学上的数字以及数学符号单单是老师在课上讲解可能印象不是很好,为了加深学生的理解,可以为他们讲一些数学的趣味小知识。

(7)、◆一年级语文《看图写话》复习资料,给孩子做做看!

(8)、笛卡儿堪称17世纪的欧洲哲学界和科学界最有影响的巨匠之被誉为“近代科学的始祖”。所建立的解析几何在数学史上具有划时代的意义。

(9)、(文章转自网络,如有侵权,请联系管理员删除。)

(10)、如果我们去参加一场婚礼,人数超过367人,那么其中必然有生日相同的人(并非同年)。

(11)、当然只有当袜子是两种颜色时,这种情况才成立。如果抽屉里有3种颜色的袜子,例如蓝色、黑色和白色袜子,你要想拿出一双颜色一样的,至少必须取出4只袜子。如果抽屉里有10种不同颜色的袜子,你就必须拿出11只。根据上述情况总结出来的数学规则是:如果你有N种类型的袜子,你必须取出N+1只,才能确保有一双完全一样的。

(12)、同样的设计理念在日常使用的电风扇或螺旋桨直升飞机的设计中都有体现。如果风扇是三叶结构,叶片制作较宽且叶片根部较强,各个部位的密度的等需均匀;如果为五叶结构,叶片较窄一些,厚度、强度也相对较低。

(13)、初中数学110分以上,必须掌握的辅助线口诀,拿去收藏不谢

(14)、有“力学之父”美称的阿基米德流传于世的数学著作有10余种,阿基米德曾说过:给我一个支点,我可以翘起地球。这句话告诉我们:要有勇气去寻找这个支点,要用于寻找真理。

(15)、首先,虽然硬币落地时立在地上的可能性非常小,但是这种可能性是存在的。其次,即使我们排除了这种很小的可能性,测试结果也显示,如果你按常规方法抛硬币,即用大拇指轻弹,开始抛时硬币朝上的一面在落地时仍朝上的可能性大约是51%。

(16)、首先,主要的重点应放在基础、基本技能、基本方法,因为大多数测试出于基本问题,较难的题目也是出自于基本.所以只有调整学习的心态,尽量让自己用一个清楚的头脑去解决问题,就没有太难的题目.考试前要多对习题进行演练,开阔思路,在保证真确的前提下提高做题的速度.对于简单的基础题目要拿出二十分的把握去做;难得题目要尽量去做对,使自己的水平能正常或者超常发挥.

(17)、   每逢新年,就到了同学们最快乐的时候。我们或与爸爸妈妈一起去商场、超市购置年货,或与亲朋好友一起去公园游玩。你能利用今天所学的知识,规划一个最省时省力的路线吗?

(18)、(7)用英语书写时,唯一按字母顺序拼出的数字是"40(forty)"。唯一一个按反字母顺序拼写的数字是“1(one)”。

(19)、数学来源于生活,生活中处处有数学。教学时要善于挖掘生活中的数学素材,让数学贴近生活,使学生感受到数学的实用性,对数学产生亲切感。

(20)、知错能改,答疑解惑,错例评析——学习的方式多种多样;趣味数学,活色生香,他山之石——不仅仅只有数学,还有诗和远方,金爸爸和你一同分享。   

4、有趣的数学小知识大全图片

(1)、每课一练、每周一练、高考真题,你取之不尽用之不绝的免费资料库。

(2)、抛硬币是做决定时普遍使用的一种方法。人们认为这种方法对当事人双方都很公平。因为他们认为钱币落下后正面朝上和反面朝上的概率都一样,都是50%。但是有趣的是,这种非常受欢迎的想法并不正确。

(3)、(4)每一个奇数,当用英语书写时,都包含一个"e"。

(4)、要是想量树的高,影子也可以帮助。只要量一量树的影子和自己的影子长度就可以了。因为树的高度=树影长×身高÷人影长。

(5)、大约在公元五至十世纪间,九九歌才扩充到“一一如一”。大约在公元十四世纪,九九歌的顺序才变成和现在所用的一样,从“一一如一”起到“九九八十一”止。现在我国使用的乘法口诀有两种,一种是45句的,通常称为“小九九”;还有一种是81句的,通常称为“大九九”。

(6)、工资的计算。财务收入与支出,日常的消费管理等等。

(7)、这是因为奇数的叶片组合能比偶数的叶片组合带来更多的性能优势。

(8)、小肠第一部分叫十二指肠,它的长度相当于本人12个手指的指幅

(9)、竹竿问题:5米长的竹竿能不能通过一米高的门?

(10)、同学们,看了这些小故事你有什么感想呢?其实我们也能当一个小小数学家,我们可以去寻找生活中跟数学有关的趣事,或者在学习的时候遇到一些有趣的数学题,给了你什么启发,你也可以记录下来,发送到以下邮箱,与我们一起分享!

(11)、   同学们,数学与我们的生活息息相关。它来源于生活实际,又能服务于我们的生活。让我们做生活中的有心人,一起发现数学、应用数学吧!

(12)、鸡蛋问题:小张卖鸡蛋,一篮鸡蛋,第一个人来买走一半,再送他一个。第二个人又买走一半,小张又送他一个鸡蛋。第三个人又买一半的鸡蛋,小张再送他一个。第四个人来买一半,小张再送他一个,鸡蛋正好买完!小张总共有几个鸡蛋?

(13)、数学是关于数字的学科,它非常有用,无处不在。打个比方说吧,我觉得数学是一杯白开水,只要加入不同的东西就会有不同的味道。如果把果汁倒进这杯水里,就会出现一杯甜蜜的果汁。但是你要把苦丁茶放进水里,那出来的就是一杯苦涩难咽的水。

(14)、这可以使计算百分比变得容易得多。例如,试着在你的脑海中计算50的8%。不太容易吧。现在把它倒过来,改为计算8的50%,很明显哪个更容易。

(15)、   为了丰富同学们的寒假生活,舜耕小学数学组的老师们精心为同学们准备了有趣的数学故事、数学知识、数学游戏。今天,李老师带大家了解一下有趣的一笔画知识。

(16)、身高也是一把尺子。如果身高是150厘米,那么抱住一棵大树,两手正好合拢,这棵树的一周的长度大约是150厘米。因为每个人两臂平伸,两手指尖之间的长度和身高大约是一样的。

(17)、    原来,一个图形是否能够一笔画出不取决于图的复杂程度,而是由图形中奇点的个数决定的。欧拉对于“七桥问题”的研究开创了数学上的新分支——图形与几何拓扑。

(18)、我国汉代有位大将,名叫韩信。他每次集合部队,只要求部下先后按l~1~1~7报数,然后再报告一下各队每次报数的余数,他就知道到了多少人。他的这种巧妙算法,人们称为鬼谷算,也叫隔墙算,或称为韩信点兵,外国人还称它为“中国剩余定理”。到了明代,数学家程大位用诗歌概括了这一算法,他写道:三人同行七十稀,五树梅花廿一枝,七子团圆月正半,除百零五便得知。这首诗的意思是:用3除所得的余数乘上加上用5除所得余数乘以再加上用7除所得的余数乘上结果大于105就减去105的倍数,这样就知道所求的数了。比如,一篮鸡蛋,三个三个地数余五个五个地数余七个七个地数余篮子里有鸡蛋一定是52个。算式是:1×70+2×21+3×15=157157-105=52(个)请你根据这一算法计算下面的题目。新华小学订了若干张《中国少年报》,如果三张三张地数,余数为1张;五张五张地数,余数为2张;七张七张地数,余数为2张。新华小学订了多少张《中国少年报》呢?

(19)、因此以“0”作为零是我国古代数学家的一项杰出贡献。

(20)、莫比乌斯环沿着中线剪开,第一次,可以得到一个更大的环;第二次及以后,每次都会得到两个互相嵌套的环。中间永远不会断开,这也是莫比乌斯环的神奇之处。

5、有趣的数学小知识大全三年级

(1)、(1)100kg的羽毛和100kg的煤炭,哪一个比较重?(2)地上有一个长6m、宽2m、深6m的大洞,请问洞内泥土的体积是多少?(3)一个羽毛球拍和一个球要128元,球拍比球贵120元,那么一个球要多少钱?(4)有位农夫的玉米田里野兔肆虐。一天晚上,他带着猎枪去田里捕杀野兔。到了田里,他发现有13只野兔正在啃食他的玉米,于是开了一枪,一只野兔中弹身亡。请问田里还有几只野兔?

(2)、我国传统用做表示次序的符号有12个,即:子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥

(3)、关于多少只袜子能配成对的问题,答案并非两只。为什么会这样呢?那是因为在冬季黑蒙蒙的早上,如果从装着黑色和蓝色袜子的抽屉里拿出两只,它们或许始终都无法配成一对。虽然不是太幸运,但是如果从抽屉里拿出3只袜子,肯定有一双颜色是一样的。不管成对的那双袜子是黑色还是蓝色,最终都会有一双颜色一样的。如此说来,只要借助一只额外的袜子,数学规则就能战胜墨菲法则。通过上述情况可以得出,“多少只袜子能配成一对”的答案是3只。

(4)、   商场分布图/园区地图会是你的好助手。

(5)、一根绳子,从一端开始燃烧,烧完需要1小时。现在要在不看表的情况下,仅借助这根绳子和一盒火柴测量出半小时的时间。你可能认为这很容易,只要在绳子中间做个标记,然后测量出这根绳子燃烧完一半所用的时间就行了。然而不幸的是,这根绳子并不均匀,有些地方比较粗,有些地方却很细,因此这根绳子不同地方的燃烧率不同。也许其中一半绳子燃烧完仅需5分钟,而另一半燃烧完却需要55分钟。面对这种情况,似乎想利用上面的绳子准确测出30分钟时间根本不可能,但是事实并非如此,因此大家可以利用一种创新方法解决上述问题,这种方法是同时从绳子两头点火。绳子燃烧完所用的时间一定是30分钟。

(6)、原始社会,人类智力低下,当时把石块放进皮袋,或用贝壳串成珠子,用“一一对应”的方法,计算需要计数的物品。

(7)、世界上数学发展史最长的国家要算我们的祖国-----中国。我国的数学发展史,自公元2700年算起,到今天为止,已有4000多年的历史了。日本著名的数学家三上义夫在.《中国算学的特色》这本书中说:一个国家有如此长久的数学史,这是世界其他各国所不能比拟的。

(8)、切西瓜问题:三刀切7瓣,吃完剩下8块皮,怎么切?

(9)、九九歌就是我们现在使用的乘法口诀。远在公元前的春秋战国时代,九九歌就已经被人们广泛使用。在当时的许多著作中,都有关于九九歌的记载。最初的九九歌是从“九九八十一”起到“二二如四”止,共36句。因为是从“九九八十一”开始,所以取名九九歌。

(10)、最早使用小圆点作为小数点的是德国的数学家,叫克拉维斯。

(11)、猫缩成一个球体,可以减小和外界接触的面积,降低热交换的速度,减少热量损失的速度,节省能量,保持体温。

(12)、三叶草,学名苜蓿草,是多年生草本植物,一般只有三片小叶子,叶形呈心形状,叶心较深色的部分亦是心形。

(13)、桌子问题,一张方桌,砍掉一个角还有几个角?

(14)、切豆腐问题:一块豆腐切三刀,最多能切几块?

(15)、欧几里得最著名的著作《几何原本》是欧洲数学的基础,提出五大公设,发展为欧几里得几何,被广泛的认为是历史上最成功的教科书。

(16)、假设你在参加一个由50人组成的婚礼,有人或许会问:我想知道这里两个人的生日一样的概率是多少?此处的一样指的是同一天生日,如5月5日,并非指出生时间完全相同。”

(17)、除号“÷”:最初这个符号是作为减号在欧洲大陆流行,最早人们用“:”表示除或比,也有人用分数线“-”表示比,后来有人把二者结合起来就变成了“÷”,瑞士的数学家拉哈的著作中正式把“÷”作为除号。

(18)、通过上面的这些问题和答案,你是不是得将每个问题都好好研究下,看看你做的这些题目,到底是哪个地方出现了问题,相信你的仔细研究,会让数学学习更加有趣味。

(19)、 “天象记录员”珊瑚虫科学家们发现,珊瑚虫会在自己身上记录时间:它们在体壁上每天“刻画”一条环纹,一年“刻画”365条,既不多也不少。

(20)、   根据需求,提前有重点的选择几个必去区域。必要的舍弃会使你的行程规划更有效率。

(1)、◆一年级数学上教学顺口溜合集,打印给孩子记记背背!

(2)、数学的故乡在哪里?世界上哪个国家的数学史最长呢?

(3)、竹竿问题:5米长的竹竿能不能通过一米高的门?

(4)、之所以会发生上述情况,是因为在用大拇指轻弹时,有些时候钱币不会发生翻转,它只会像一个颤抖的飞碟那样上升,然后下降。如果下次你要选出将要抛钱币的人手上的钱币在落地后哪面会朝上,你应该先看一看哪面朝上,这样你猜对的概率要高一些。但是如果那个人是握起钱币,又把拳头调了另一方向,那么,你就应该选择与开始时相反的一面。

(5)、列综合算式可求出第一天卖布的米数:1026÷(l+2+6)=1026÷9=114(米)而114×2=228(米)228×3=684(米)所以三天卖的布分别是:114米、228米、684米。请你接这种方法做一道题。有四人捐款救灾。乙捐款为甲的2倍,丙捐款为乙的3倍,丁捐款为丙的4倍。他们共捐款132元。求四人各捐款多少元?

(6)、西安半坡出土的陶器有用1~8个圆点组成的等边三角形和分正方形为100个小正方形的图案,半坡遗址的房屋基址都是圆形和方形,可以看出中国古代人在数学上的领先地位。

(7)、例如:在教学《克和千克的认识》:一开始就从学生身边选择素材并制成录像片段作为课堂引入,这三段录像分别是学生称体重、农民卖菜和在水果摊买水果。使学生通过对熟悉的生活场景的回顾,感受到质量与我们生活的密切联系,消除对这一知识的距离感。

(8)、加减号“+”、“-”—五百年前德国人最先使用的。据说,当时酒商在售出酒后,曾用横线标出酒桶里的存酒,而当桶里的酒又增加时,便用竖线条把原来画的横线划掉。于是就出现用以表示减少的“-”和用来表示增加的“+”。

(9)、数学是什么?它有什么用?这是一个需要我们思考的问题。

(10)、我国却在1240年前就已创造了“0”,我国的零,当时是“○”,它是根据写字时缺字用“□”来表示缺字,“0”表示这个数没有,或这个数位上没有,用“○”表示,随着人们长期不断地记数,慢慢发展演变,最后确定为今天的“0”

(11)、小朋友们一起试试上面的这些题目吧,相信你很快就会给出答案,但是,你的答案真的对吗?下面,让我们一起对对答案,相信你会大跌眼镜。

(12)、统计学的计算。迟到的时候需要在执勤人员那里登记,要求写下年级班级姓名。这样学校就会知道这个星期哪个班的迟到人数最多,哪个班迟到人数最少。

(13)、我们的身体真得很奇妙,手是一个常见的计算器。最常见的手的计算是9的倍数计算。计算9的倍数时,将手放在膝盖上,如下图所示,从左到右给你的手指编号。现在选择你想计算的9的倍数,假设这个乘式是7×只要弯曲标有数字7的手指,然后数左边剩下的手指数是右边剩下的手指数是将它们放在一起,得出7×9的答案是

(14)、数学来源于生活,生活中处处有数学。教学时要善于挖掘生活中的数学素材,让数学贴近生活,使学生感受到数学的实用性,对数学产生亲切感。

(15)、你以前听说过“鸡兔同笼”问题吗?这个问题,是我国古代著名趣题之一。大约在1500年前,《孙子算经》中就记载了这个有趣的问题。书中是这样叙述的:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?这四句话的意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头;从下面数,有94只脚。求笼中各有几只鸡和兔?你会解答这个问题吗?你想知道《孙子算经》中是如何解答这个问题的吗?解答思路是这样的:假如砍去每只鸡、每只兔一半的脚,则每只鸡就变成了“独角鸡”,每只兔就变成了“双脚兔”。这样,(1)鸡和兔的脚的总数就由94只变成了47只;(2)如果笼子里有一只兔子,则脚的总数就比头的总数多因此,脚的总只数47与总头数35的差,就是兔子的只数,即47-35=12(只)。显然,鸡的只数就是35-12=23(只)了。这一思路新颖而奇特,其“砍足法”也令古今中外数学家赞叹不已。这种思维方法叫化归法。化归法就是在解决问题时,先不对问题采取直接的分析,而是将题中的条件或问题进行变形,使之转化,直到最终把它归成某个已经解决的问题。

(16)、今天是六一儿童节,不满14周岁的孩子,可能正在这一天的假期里吃着零食、看着动画片,欢庆这个属于他们的节日。

(17)、而在孩子的意识中,数学学习是一件非常枯燥的事情,很多数学知识当你开始研究起来的时候,你就会感觉到无比有趣,比如说,趣味数学急转弯,下面,就让我们一起体验下这些数学急转弯吧。

(18)、中国南北朝时代南朝数学家、天文学家、物理学家祖冲之把圆周率数值推算到了第7位数。

(19)、也许大部分人都认为这个概率非常小,他们可能会设法进行计算,猜想这个概率可能是七分之一。然而正确答案是,大约有两名生日是同一天的客人参加这个婚礼。如果这群人的生日均匀地分布在日历的任何时候,两个人拥有相同生日的概率是97%。换句话说,你必须参加30场这种规模的聚会,才能发现一场没有宾客出生日期相同的聚会。

(20)、鸡蛋问题:小张卖鸡蛋,一篮鸡蛋,第一个人来买走一半,再送他一个。第二个人又买走一半,小张又送他一个鸡蛋。第三个人又买一半的鸡蛋,小张再送他一个。第四个人来买一半,小张再送他一个,鸡蛋正好买完!小张总共有几个鸡蛋?

(1)、12这个数字跟人类有缘,与我们的生活有密切的联系。

(2)、(5) "4"是唯一的数字,当用英语书写时,其拼写包含的字母数量与数字本身相同。

(3)、我们知道两车相距100英里,每辆车的时速都是50英里。这说明每辆车行驶50英里,即一小时后两车相撞。在火车出发到相撞的这一段时间,苍蝇一直以每小时60英里的速度飞行,因此在两车相撞时,苍蝇飞行了60英里。不管苍蝇是沿直线飞行,还是沿”z”型线路飞行,或者在空中翻滚着飞行,其结果都一样。

(4)、例如:在教学《克和千克的认识》:一开始就从学生身边选择素材并制成录像片段作为课堂引入,这三段录像分别是学生称体重、农民卖菜和在水果摊买水果。使学生通过对熟悉的生活场景的回顾,感受到质量与我们生活的密切联系,消除对这一知识的距离感。

(5)、圆的中心叫圆心,圆上任何一点到圆心的距离都是相等的。把车轮做成圆形,车轴在圆心上,当车轮在地面滚动时,车轴离地面的距离,总是等于车轮半径。

(6)、阿拉伯数字是古代印度人发明的,后来传到阿拉伯,又从阿拉伯传到欧洲,欧洲人误以为是阿拉伯人发明的,就把它们叫做“阿拉伯数字”。因为流传了许多年,人们叫得顺口,所以至今人们仍然将错就错,把这些古代印度人发明的数字符号叫做阿拉伯数字。

(7)、◆一年级语文(上册)学习重点、难点及容易出现的考查项目!

(8)、两辆火车沿相同轨道相向而行,每辆火车的时速都是50英里。两车相距100英里时,一只苍蝇以每小时60英里的速度从火车A开始向火车B方向飞行。它与火车B相遇后,马上掉头向火车A飞行,如此反复,直到两辆火车相撞在一起,把这只苍蝇压得粉碎。苍蝇在被压碎前一共飞行了多远?

(9)、骑自行车的时候用脚蹬一圈脚踏板自行车行走的米数。我们可以去测量车轮的半径,再用圆的周长公式求出来。

(10)、(6) 如果你把13张不同的扑克牌(A(ace),2(two),3(three),4(four),5(five),6(six),7(seven),8(eight),9(nine),10(ten),J(jack),Q(queen),K(king))中的字母数算出来,你会发现有52个字母,正好是一副扑克牌的数量(不包括大小王)。

(11)、如果一旦叶片数量为偶数片设计,并形成对称的排列方式的话,那么不但使得风扇自身的平衡性难以调整,而且容易使风扇在高速转时产生更多的共振,从而导致叶片无法长时间承受共振产生的疲劳,最终出现叶片断裂等情况。

(12)、我们知道阿拉伯数字9原是印度人发明的,13世纪后期传入中国,人们误认为0也是印度人发明的。其实印度起先发明时没有“0”,他们把“204”,写成“24”,中间空着,把200写成“24”,怎么区别中间有几个零呢?为了避免看不清,就用点“·”来表示,204写成“4”,那不和小数混淆了?直到公元876年才把“0”确定下来。

(13)、人们对此感到吃惊的原因之一是,他们对两个特定的人拥有相同的出生时间和任意两个人拥有相同生日的概率问题感到困惑不解。两个特定的人拥有相同出生时间的概率是三百六十五分之回答这个问题的关键是该群体的大小。随着人数增加,两个人拥有相同生日的概率会更高。因此在10人一组的团队中,两个人拥有相同生日的概率大约是12%。在50人的聚会中,这个概率大约是97%。然而,只有人数升至366人(其中有一人可能在2月29日出生)时,你才能确定这个群体中一定有两个人的生日是同一天。

(14)、四叶草是由三叶草基因突变而产生的,它只占其中的十万分之一。也就说在十万株苜蓿草中,你可能只会发现一株是‘四叶草’,因为机率太小。因此“四叶草”是国际公认为幸运的象征。

(15)、如果你想学好数学,你需要提出更多问题,熟悉各种问题的解决问题的想法.首先,我们先从课本的题目为标准,反复练习基本知识,然后找一些课外活动,帮助开拓思路练习,提高自己的分析和掌握解决的规律.对于一些易于查找的问题,您可以准备一个用于收集的错题本,编写自己的想法来解决问题,在日常养成解决问题的好习惯.学会让自己高度集中精力,使大脑兴奋,快速思考,进入最佳状态并在考试中自由使用.

(16)、切西瓜问题:三刀切7瓣,吃完剩下8块皮,怎么切?

(17)、

(18)、

(19)、

(20)、